
IECU.'ITY CLASSIFICATION OF THIS PAGE (when Data Entered)
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO- 3. RECIPIENT'S CATALOG NUMBER

0 4. TITLE (and Subtite) S. TYPE OF REPORT a PERIOD COVERED

Interim
A Probabilistic Model of Brittle Crack Formation April 1987-March 1988

6. PERFORMING ORG. REPORT NUMBER

00

0) 7. AUTHOR(*) S. CONTRACT OR GRANT NUMFSER(s)

A. Moet, R. Dearth, H. Aglan, A. Chudnovsky N00014-86-K-0285
and B. Kunin

s. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK P
AREA & WORK UNIT NUMBERS

Case Western Reserve University
Cleveland, Ohio 44106-2699

I. CONTROLLING OFFICE NAME AN% ADDRESS 12. REPORT DATE

July 1988
I. NUMOER OF PAGES

63
14. MONITORING AGENCY NAME A AOORESS(I EItftinat Irm Centreolthk Offlce) 15. SECURITY CLASS. (of thls fepoet)

Office of Naval Research Unclassified
Arlington, Virginia 22217 ,s.. DECLASSI|FCATON/OWNGRADING

SCM )EULE

IS. DISTRIBUTION STATEMENT (*I this Rhport)

Approved for public release; distribution unlimited

17. DISTRI UTION STATEMENT (of the absiiaft entered Ini .It differet 00 RPeWt)

14. SUPPLEMENTARY NOTES

Is. KEY WORDS (CaftfA,. an ree l aide itfeassidr mild I& h leek j

C/C composite; probabilistic fracture; strength field

20. ABSTRACT (ConUm -u anw. revrs aideI es4aul ie fEdni IV 14 ubr

PLEASE SEE REVERSE ELECT --

AUG 2 2 1988

DO ,, A" 1473 EITION Oai I NOV se iS obSo.ETE
S/k 01 02.LF-0146601 SECURITY CLASIFICATION OF THIS PAGE (Ubmi Date EBRw00

88 822 . "*



MCU*4Y CLASSIFICATION OF THIS PAOS fflm PW& &Ew90

20 .STILACT

Multiple experiments on macroscopically identical 3D carbon-carbon (C/C)
composite specimens show that the fracture behavior displays the main features S
of a stochastic process which reflects the random nature of the strength
field. The critical load is random and a semple set of crack trajectories dis-
plays a Poisson's type diffuse character. Crack trajectories are unique for
each individual experiment (no two coincide). The crack appears to propagate
stepwise (a sequence of local failures) through a random field of defects
which is constrained by the orthotropic architecture of the yarn bundles. As
such, the strength field cannot be approximated by a single parameter, a pe-
cific fracture energy 2y- . J ,..

In our previous report, we presented the mathematical foundation of a
probilistic mdel of brittle crack formation. The model combines the concepts
and formalism of conventional fracture mechanics with the conceptsaid formal-
ism of stochastic processes. The strength field, i.e., the specific fracture
energy 2y-J in fgacture mechanics, is now considered as a fluctuating field
which is deiribitd by a pointwise WLebull distribution F(y), the correlation
distance r and the crack diffusion coefficient. Several refinements of the
model are Tntroduced. The probability that a crack propagates along a speci-
fic path, "chosen" from all possible paths, from an initial point to a final
point is introduced through the "crack propagator" concept. Of course, the
crack diffusion coefficient uniquely determines the set of all possible crack
paths. Equations are derived to predict the probability of crack penetration
depth in terms of the energy release rate (stress-strain distribution), the
crack diffusion coefficient and the correlation distance (statistical features
of the strength field) for stable (crack arrest) and unstable (critical crack) 9
configurations.

Guided by these theoretical developments, an experimental methodology is
designed to evaluate the parameters called upon by the theory and to examine
its predictive power. A model material whose fracture behavior is well under-
stood (PMKA) was used. The experiment employs crack arrest (stable) configura-
tion. From the statistical characteristics of the load (or displacement) and
crack arrest length, and the correlation distance (defined from fractographic %
examination), the strength field parameters Yave and a are deduced from the %
proposed model. :%
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1. Introduction

Fracture mechanics delivers the methodology to compensate the S

inadequacies of conventional design concepts based on tensile

strength, yield strength or buckling stress particularly when there

is the likelihood of cracks. At present, fracture mechanics concepts

are well developed and standard procedures are established to

determine fracture toughness parameters on the basis of linear

elastic or nonlinear theories. Both theories deal with homogeneous, S

isotropic materials whose strength field may be well approximated by

a single (fracture toughness) parameter , be it the critical stress

intensity factor KIc or the critical energy release rate Jlc" Carbon- 0

carbon composites do not fit this description. The course orthotropic

texture of the relatively large yarn bundles coupled with the extreme

anisotropy of the graphitic matrix play a major role in determining _

the microstructural character and behavior of the composite. An

important consequence of such anisotropy is the microcracking network

induced by thermal stresses during manufacturing [1, 2]. These

microstructural complexities violate the fundamental assumptions of a

continuum upon which fracture mechanics is founded. The few reported

studies which attempted to characterize the fracture resistance of

carbon-carbon composites [3-9] attest to the inappropriateness of the

conventional fracture mechanics methods. In this regard, the need

concluded by Jortner, in a recent symposium on Thermomechanical

Behavior of High Temperature Composite [10], for innovative mathematical

modeling ought to be addressed.

11KS
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The very nature of carbon-carbon composite indicates that the

strength field is heterogeneous and can not be characterized by a

single parameter. Recognizing this basic fact, we introduced the

basic mathematical structure of a probabilistic model for brittle crack

propagation in our previous report. The physical assumption

underlying our approach is that brittle fracture of solids is

controlled by a random field of microdefects. The strength of such

a field, i.e., the specific fracture energy 2y in conventional fracture

mechanics, is now considered as a random field. The crack advances

through the weakest "links" in the random field. It results in a

randomly tortuous crack trajectory. The crack diffusion coefficient

is introduced as an integral characteristic of such tortuosity [11-13].

Since the crack propagates through the weakest "links", the

values of y-field along an actual crack trajectory represent minima 40

in the specific fracture energy. This, in accordance with the

statistics of extremes, suggest a Wiebull distribution for Y at every

point of the crack trajectory. The distribution is characterized by

three parameters: Ymin, Yave and a, the shape parameter. The values

of y at two different points are generally described by a joint

distribution function. However, when the two points are separated

by a distance r >ro, the values of y at the two points are mutually

independent. The distance ro is the correlation distance.

Chudnovsky and Kunin derived the probability of crack penetration

depth under a specified displacement in terms of the strength field

parameters and the energy release rate [11]. An experiment was

designed to examine the validity of the proposed theory Results of
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these experiments are discussed in Chapter III. In this Chapter, the

phenomenological features of crack propagation in 3D C/C composites

are described. These results are sought to assess the applicability of

the proposed theoretical model and to guide further refinement of the

theory.

2. Materials and Testing N

Two carbon-carbon composites were considered in this work. Both

materials are three dimensions C/C composites. They are G20-6G after

graph. 7 and G20-4G after graph. 5, obtained from the Aerospace

Corporation. The average thickness for each billet is about 4". The

G20-6G is a higher density composite while the G20-4G is a lower density.

Different specimen geometries such as compact tension and tapered

double cantilever beam were attempted to carry out fracture tests on the

3-D carbon composites. In spite of reinforcing the holes of the

specimen, failure occurred at the grips. A three-point bend specimen

under monotonic loading was then chosen to conduct the fracture testing.

The test specimens were machined into 56 X 14 mm beams from the billet

sections as illustrated in Fig. 1. A 0.38 mm thick milling cutter was

used to introduce a 3mm notch at the middle of each specimen.

Fracture testing was carried out at room temperature using an MTS

testing system equiped with a 1 kip load cell. The test was run using

displacement control with a cross-head speed of 50u/min. A specially

designed Instron stiff steel load fixture was used to insure minimum

machine compliance.

The load versus the load-point displacement (LPD) curves were

generated by continuously monitoring the load and crosshead displacement

INii
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during tests. A clip gauge was also used to monitor the load versus
V

the crack opening displacement (COD). Both load vs. LPD and load vs.

COD curves wereplotted instantaneously during the tests on X-Y plotters.

The data were also digitized and stored using a digital computer system

attached to the testing machine.

The tip of the notch was viewed using a travelling optical

microscope. A video system was attached to the microscope in order to

obtain interval records of crack propagation and to record any damage

events which could be observed.

Nine macroscopically identical specimens of the composite B7 as

well as five specimens of composite B5 were fractured under identical

test conditions.

One test on composite B5 was stopped after a first major drop in

the load was observed. The sample was then examined using SEM to

identify the damage events associated with that drop in the load.

3. Results
6

A typical load vs. LPD curve for both composites is shown

schematically in Fig. 2. Actual load vs. LPD and load vs. COD curves

for one sample of the B7 composite are shown in Figures 3 and 4,
V

respectively. Both curves exhibit the same trend. At the beginning

there is a linear portion followed by another of increased nonlinearity.

After a peak is reached at P2 and A2, major damage events appear to

have occurred causing successive load drops (Figures 3 and 4). Each

load drop is preceded by an approximately constant load plateau.

-N.
%
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A histogram of maximum loads P2 and the corresponding displacement

A2 of the nine identical specimens of the B7 composite is shown in Fig. 5.

The wide scatter, again, attests to the random nature of the strength

field.

SEM observations reveal the tortuous nature of the fracture path

and how is it dictated by the material's architecture. Figure 6 displays

a composite micrograph showing the entire fracture path of one of the B7

composite specimens. The crack appears to have advanced by a series

of discrete steps involving interlaminar and cross laminar fracture

processes. In other words, the crack diffusion into the random field is

constrained by the yarn bundles. Interlaminar fracture proceeds until

"a weak link" in the yarn permits a cross laminar advance.

Although a final drop of the load-displacement curve indicated

ultimate failure, the two halves of the specimen remained together
(Fig. 6). This indicates that the fracture "surface" is not traction

free; a feature that deviates from the basic concepts of fracture %

mechanics. Mechanical interlocking and yarn pull-out resistance appear

to play a role in the fracture processes.

To ascertain the crack path in Fig. 6, the same specimen was separated

manually and one half was re-examined in the scanning electron microscope.

A micrograph of this half is shown in Fig. 7. The discrete "steps" of -

crack advance can now be traced. The crack difussion is constrained by '

the yarn bundles.

Crack trajectories at the specimen surface (side view) were observed

from shadow graphs obtained with angular illumination (% 30O). This

~W U .2-
5' ~. ~ ~ 'i' -5'j~~. "1.~. ~ i. U U.Ui'.U *~ ~~ %
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jorocedure was followed to observe only surface projection of the crack

path. An assembly of the nine trajectories is shown in Fig. 8. These

trajectories possess two specific discriminating features when compared

with those obtained form short fiber composite [13] or PMMA [14]. Firstly,

the diffusive crack behavior appears to be constrained (non-Brownian)

and secondly, deviation of the trajectories from the X-axis increases

up to a certain crack depth then decreases towards the loading point.

The results of Fig. 6-8 suggest further refinement of the proposed model

as will be discussed subsequently.

Specimens prepared from the B-5 composite (lower density) display O

similar behavior. Typical load-displacement curves for B-7 and B-5

are plotted in Fig. 9. As expected, the B-5 specimen shows similar LPD

but at lower loads. Again, this result indicates that the role of the

composite "main frame" architecture dictates the general fracture V.'

behavior.

In an attempt to explore the fracture events associated with load- .

drops, a B-5 specimen was monotonically loaded until the first load

drop occurred then was unloaded. The load vs. LPD is shown in Fig. 10

and the load vs. COD is shown in Fig. 11. The specimen was then

examined in scanning microscope. A SEM micrograph is shown in Fig. 12.

Significant crack propagation is observed. The crack initiated from

the center of the notch across a circumfhrential yarn bundle, inter-

facially along the first interface encountered to a certain length, at ..

which it propagates tortuously across yarn to be arrested there. ".

This exploratory experiment suggests the availability of information

... .%~% % ... . .. . " .. .. .ay ...... ~ -~ .
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necessary to define "elementary" fracture processes responsible for the
S

unusual load-displacement behavior.

4. Discussion

The results outlined in the previous section serve two purposes:

(1) to probe the specific nature of fracture processes in C/C composite,

and (2) to explore the type of information available from fracture

experiments.

Indeed, the strength field of C/C composite can not be approximated

by a single (fracture energy) parameter and ought to be treated as a

random field. Hence, a probabilistic approach ought to be developed. S

For this purpose, a model for brittle crack formation evolved [11]. 5

Further refinement of the model is presented in Chapter II of this ,

report. Experimental procedures and analytical methods were developed __

to employ the theory. In Chapter III, the methodology of evaluating

the random field parameters from crack arrest experiments is described.

As evident from the present study, C/C composites display the main

ingredients of probabilistic (stochastic) fracture. However, the results

reveal that the material architecture imposes certain specificities which

include:

(1) The load-displacement curves of C/C composite display ,5

characteristically discrete steps which appear to reflect failure of

individual yarn bundle or a group of yars. Failure of an individual yarn

is considered to be an elementary event of the fracture process. The

specific energy of such events constitutes the y-field. A link between

',.'
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the stat*stics of the load-displacement steps and that of individual w
yarn fracture ought to be established.

(2) The sample set of crack trajectories (Fig. 8) displays Poisson's

type features. In our current model Wiener's type formalism is employed

to characterize the set of all possible crack trajectories 0. This

requires reformulating the probabilistic measure U on Q and establishing

integration procedure over Q.

(3) The crack path (Fig. 12) clearly shows that evaluation of the

stress-strain singularity at the crack tip, a necessary excercise to

evaluate the energy release rate along a given path, requires the search

for an innovative technique for stress analysis. Perhaps, a brittle ..-.

lacquer or a photoelastic technique may produce useful information to

perform the required stress analysis.

5. Conclusions

(1) Fracture of C/C composite displays the main featureof probabilistic

brittle fracture which can be described by the probabilistic model •

of brittle crack formation.

(2) The crack trajectories reflect the constrains imposed by the 3D yarn

bundles. This would require the application of Poisson's

formalism to characterize the set of possible crack trajectories.

(3) The load-displacement curve displays characteristically discrete i.5%

steps which are believed associated with elementary fracture events.

Or
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1mm

Fig. 6 A crack trajectory of one specimen of the B-7 C/C composite
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A PROBABILISTIC MODEL OF BRITTLE CRACK FORMATION, II

Id

A. Chudnovsky and B. Kunin V
Department of Civil Engineering,

Mechanics, and Metallurgy
University of Illinois at Chicago

Chicago, Illinois 60680

1. INTRODUCTION "

The physical assumption underlying our approach is that the brittle frac-

ture of solids is controlled by a random field of microdefects. We are inter-

ested in a characterization of this field only as far, as it relates to frac-

ture phenomena. We take a random field of specific fracture energy y as a

representative characteristic of the defect population.

We address the following question: how the scatter of such macroscopical

parameters, as critical load, critical crack length, crack trajectories, etc.

are related to the statistics of the y-field. Our objective is a reconstruc-

tion of the statistical parameters of the y-field on the basis of observed

quantities.

2. CRACK PROPAGATOR

Let us consider a crack wo in a two-dimensional solid. Suppose that the

crack tip is at a point _ (see Fig. 1). We define crack propagator P. (x",-X)
0

as the probability that the crack wo extends from x through another point

Multiple experiment on crack extension under macroscopically identical

conditions demonstrates that crack trajectories are unique for each individual

experiment (no two coincide). More importantly, in a given test, any of the

trajectories observed in other (macroscopically) identical tests should be

%,

0 5L.% I
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viewed as a priori possible. Statistical analysis of the observed crack tra-

jectories allows one to formulate assumptions about the set ft of all possi-

ble crack trajectories (connecting x and X).

We now assume that only one crack is formed in each specimen (single path

fracture).' Then the crack propagator Pwo (x, X) can be written as

-I- 4. 4. -*Po(x,X) . P (xXIW)P (1)

where P. {w] is the probability that the crack 'chooses' a path w among all
0 1 1

possible paths extending wo from x to X, and P. (-w,'o) is the condi-
0

tional propagator, i.e., the conditional probability that the crack reaches

if it grows along a particular w.

In a continom based model, the space Q is uncountable, and so the sum

in Eq. (1) is substituted by an integral:

( xX) P, Jw) dM (w) (2)

Thus determination of the crack propagator is reduced to the following tasks:

selection of an adequate crack trajectory space Q and the probability meas-

ure du () on Q as well, as evaluation of the conditional crack propagator

00It is observed for typical test conditions, that a preferred direction ''

exists with respect to which the crack trajectories are graphs, t2 - E2( )

(see Fig. 1, which represents schematically a trial set of possible crack
4. "

extensions from X to X).

In this paper, as in Ref. 1, we restrict ourselves to a 'diffusion'

approximation, i.e., we model crack trajectories by graphs of one-dimensional

Brownian motion w - w( ]), x I :S t < X1 , w (x) - x2 , w(X1 ) - X2 (2-. * - {"
x,X

will denote the space) and choose dli (w) to be a conditional Wiener measure

.%
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di (D)(w) referring to the parameter D> 0, as a 'crack diffusion coeffi-

x,X

cient' (cf. Eqs. (lOa, 13a)); D reflects the tendency of crack trajectories to

deviate from the fi-axis and is experimentally measurableV. In the diffusion

approximation, evaluation of D uniquely determines the set of all possible

crack trajectories as well, as the measure dp(w).

Determination of the conditional crack propagator P (X,h1w) depends on

the mechanism of crack growth. One can visualize various sequences of local

failures leading to the crack extension along w from x to X. Following

Ref. 1, we consider crack formation (along w) as a sequence of local failures

immediately ahead of a current crack tip. This contrasts possibilities of

crack growth by merging with local failures that occurred away from the crack

tip.

Being concerned with brittle fracture, we adopt a Griffith type criterion

of infiniteimal crack advance along a trajectory w: at a current crack tip

position , the potential energy release rate J,(,) should exceed the spe-

cific fracture energy 2y(.).

The evaluation of P. (x.X1w) based on the above criterion is the same as
0

that presented in Ref. 1. It is assumed that -y is a statistically homogene-

ous random field whose values are independent at distances exceeding certain

r, which is much smaller than the crack size. Then the probability that the S

criterion of infinitesimal crack advance (J. > 2Y) is met at every point of w

is given by (see Ref. 1, Appendix)

- - l
P (,XJI") -exp U f 1 P.12-y > JW~ 1)1 (3)

"

-"",

*%,e
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Finally, it is assumed1 that values of -y along possible crack trajecto-

ries represent minimal values of the y-field and therefore should obey one of

the distributions of extremies. The Weibul distribution is a natural choice,

since -y is a non-negative quantityb. Thus the distribution function for Y

is

1- exp i , ' 2 Ymin

F (() 
(

0 ' '< 'ymin

where Ymin - 0 'Yo > 0 and a > 0 are empirical constants.

IICombining Eqs. (2-4), one obtains the following expression for the crack

propagator 4

/~X 1  J(1)- mi n

P(x ,X) f exp - ex p 
j oo /- (5)

x dA (D ( J()

-,X

3. CRACK DIFFUSION EQUATIONS

The energy release rate Jd,(wl) is a functional of the crack trajectory

W. It can be approximated by a function J(Q1 ,w(fi)) of the crack tip coordi-

nates (see Ref. 1, p. 4126). Such an approximation allows one to represent

the functional integral in Eq. (5) as the solution of a partial differential

equation. Moreover, it is known that P x,'X) given by Eq. (5) [with Jd("l )

substituted by J(Q1 ,w( l))] is the solution of each of the following two

boundary value problems: I

-I-. D 2 1.4. 1 - 4
X1 P(x, X) b- P(xX) - U(X) P(x,X) (6a) I

2 2 r
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P ( lx)I .O x] (x2 - X2) (6b)

F(,X)" 0 , as X + , X1  > x 1  (6c)

and
D 2 1 (7a)

bl P ( , X)  b P(x,X) + - U(x) P(x,X)

P rxX, M - X(7 b)
. (xz  _ x2) (b '

1x1- X1  2

b x2F(x,) 0 , as x 2 - ± , x 1 < X1  , (7c)

4.
where the 'potential' U(Q)/r expresses the probability density (in 1) of
the crack arrest (J(-) < 2-Y) at a point ; U(s) is directly related to the

Weibull distribution for -Y and is given by (see Eq. 4)6 and Footnote')

- "ymin a
U(Q) - exp - ] (8)

Apparently, U accounts for the stress-strain distribution (through the

energy release rate J), while the crack diffusion coefficient D and the cor-

relation distance r reflect only the statistical features of the fracture

processes. 5

We apply the above equations to two essentially different crack propaga-

tion problems. '9

Let us distinguish stable and unstable types of specimen-loading configu-

rations (exemplified in Fig. 2). Namely, we call a configuration stable

(unstable), if within the expected range of crack lengths the energy release

rate decreases (increases) with the crack growth. Crack arrest is expected

for a stable configuration, whereas an avalanche-like crack propagation occurs

-.-.'
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in an unstable case when either the crack or the load reaches certain critical

value. We turn to separate treatment of these cases.

Stable Case. Let us consider a prenotched specimen (see Fig. 2a) and the

L
probability P(X) that a crack growing from the notch passes througi X.

Apparently, PMX is related to the crack propagator (note the position of the

coordinate system):

A t , P(o) c(9)

It is immediate from Eqs. (7a-c), that P) is the solution of

4 D 2 1 j 4. (Oa)
ax P(X) - 2 P(X) - - U(X) P(X)

2 2 r

P (x) - 6x 2  (lOb)
P Xl= 0 CY(IOb

P(X) 0 , as X ± c, X 1 > 0 . (1Oc)

Eq. (1Oa) was called 'crack diffusion equation' in Ref. 1.

The probability density Pa(X) for the arrest crack tip location can be

expressed in terms of P(X) and U(X). Indeed, the probability pa() dXj dX 2

of the crack being arrested in a vicinity dX1 dX2 of X equals the probabil-

ity P(X) dX2  of reaching the vicinity times the conditional probability

U(X) dXl/r of being arrested upon getting there. Hence

Pa(X) - P(X) U(X)/r (11)

Unstable case. Let us consider a specimen-loading configuration with a4
pre-existing crack wo (its tip at x) shown in Fig. 2b. By specimen's fail-

ure we mean extension of the crack to the opposite edge. The event of failure

is the sum of events consisting of crack extension to an arbitrary point :
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(B.X2). For the single path fracture, these events are mutually exclusive.

Hence the probability P.O (x;a) of failure under a given load a can be

4.

expressed through crack propagator Po (x, (B,X2)), which represents the prob-
0

ability (density in X2) of crack extension to (B,X2): 0

Po (x;a) = PodX 2  (12)
f00

4.

It is immediate from Eqs. (7a-c) that P, (x;a) is the solution of (suppress-

ing a,wo )
+ D 2 4 1

axi P(x) - ax P(x) + - U(x) P x) (13a)

PFx) i B (3b)
x 1 - B

ax2 P(x) - 0 , as x2  
+  , x1 < B , (13c)

We will refer to Eq. (13a) as 'backward crack diffusion equation' (unstable

case) and to Eq. (lOa) as 'forward crack diffusion equation' (stable case).

Probability of failure P, ( x;a) can also be interpreted as the distri-
0

bution of critical loads. Namely, if the precracking is given and the criti-

cal load ac is the only random variable, then its distribution function is
B

given by

F, (a) - • (d (,)a) 4. (1.)

c 0_

The probability of failure also yields the conditional probability den-

sity )c(x) of critical crack tip location. Let us, for example, consider

slow crack growth under fatigue or creep. Then the probability pc(X") dx1 dx2

that the crack turns unstable in a vicinity of the point x equals the prob-
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ability h(x) dx2  that the slow crack passes through the vicinity times the

probability U(x) dxl/r that it is not critical within the vicinity times the

probability P(x;a) la that it turns unstable immediately upon leaving the

vicinity, i.e.

pc(x) - h(x) U(x) P(x,a)/r 1  • (15)

Probability distributions pc(x) above and Pa(X) (Eq. (11)) might be

called probability clouds of crack arrest and crit':al crack tip locations,

rrespect ivel1y. ,

a,,
a..

a..a.
a.?
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Introduction

A probabilistic model to extract the strength field parameters, y* and a, of a .S

material during brittle crack formation has been developed [1,2]. For a crack arrest

experiment the probability of crack penetration depth f(X) at a displacement (6) is

expressed as %

f (X) =ff6) f(Xlb) d8
(1)

where f(b) is the probability density of the displacement at the grips. Both the f(X) and

f(5) can be obtained from the results of a crack arrest experiment. The function f(XIb) is

a conditional probability density of X for a given value of 6. This function is expressed

in the form

f(Xlb) -dF(XI6)/dX (2)

where

F(Xlb) =1 - exp ] xp d1 ) d-
.= c 2y - ro " .-

(3):-:"

where (1 + 1/a) is the Gamma function, ro is the radius of correlation of the material .

and Jo(x;b) is the energy release rate for a straight horizontal crack of the same depth"'"

x. * and a are the strength field parameters which characterize the resistance of the

material to brittle crack formation. 
-

The utilization of this model involves a minimumization technique to equate or

minimize the difference between the experimentally found f(X)ex and the theoretically

calculated f(X)th. To obtain the theoretical function f(Xth, a value of the radius of

correlation ro , for the material, has to be found and incorporated into Eq. 3. Different

values of y" and a should be tried in the minimumization program until f(X)th f(X)ex, 0

.r- . -,. , 
.
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The values of y* and a at which the equality condition takes place are the strength field

parameters of the material.

In order to demonstrate the utility of this theory an experiment on a model

material (PMMA) was conducted. This chapter oL'Jines experimental and analytical

techniques to determine the strength field parameters, y* and a, of PMMA.

2. Experimental Procedures

The material used in this study is PMMA ('plexiglas M') manufactured by the

Rohm and Haas Company(Philadelphia) in the form of 6 mm thick sheets. The

reported tensile strength of this grade PMMA is 68.95 x MN/m 2 with a modulus of

elasticity of 3.1 GN/m 2 .

Twenty-five identical tapered double cantilever beam specimens were

machined to the dimensions given in Fig. 1. A saw cut notch of 6 mm was machined

into the specimen. The stress intensity factor of this geometry is given by [3]

K,( b k (x)
S(x) (4)

and

2.98 (0. A +0.7 fo X0.6.0.(X 0.33
[0.3 (X + 0.833)]2~ 083

R(X)=

0.537+ 2.17(( +X)
oX_ for x >0.6

wiAi -1 1

W2(1-' 2U4~~
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and

328.9|3.33ZX+2.082 + 0.350 + 1.4641m(X+.833)-1.652
X. 2(+x 0.833) 2 + 0.833

fork s 0.6

S(X) =

L 4.709 (4X -2) 4.662
2 + 4.66 2.6661n(1 -X)+ 11.187

for X > 0.6

where X = X/W and W is the specimen width measured from the load line.

A razor blade was inserted into the root notch to a depth of 0.5 mm. The total

length of the initial notch Xo was 6.5 mm. The experiment was conducted on an

Instron 1125 testing machine. The sample was first preloaded to 50 N to properly

align the sample and remove any slack in the loading assembly. A monotonically

increasing load at a cross-head rate of 0.5 mm/min was applied until the crack jumped

from the tip of the razor notch. Immediately after the crack jumped, the cross-head was

stopped. At this point, a finite amount of load remained on the specimen due to the

remaining ligament. Once this load stabilized, the load was reapplied until failure

occurred. A.

Fractographic analysis was conducted on the fracture surface of the specimen

using optical and scanning electron microscopy. From this analysis the crack arrest 0

lengths were measured and elementary fracture events which can be employed as a

candidate radius of correlation were identified. ,

Analysis of the crack diffusion requires the tracing of the twenty-five crack

trajectories. One half of each broken specimen was properly aligned and analyzed

using a Bendix linear profile system. The crack trajectory along the middle of the

fracture surface was traced for each specimen, and magnified 50 times vertically and 5

p.°
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times horizontally. This is in order to enhance the diffusive features of crack

propagation. B

3. Results

The results of the present experiment consist of three parts. These are

a) Fracture Mechanics of Crack Arrest, b) Fractographic Analysis and c) Crack

Diffusion Analysis.

a) Fracture Mechanics of Crack Arrest S

A typical load displacement curve is shown in Fig. 2. The grip displacement 6 is

measured from zero, along the displacement axis, to the point at which the load drops

sharply. The values of 8 for the twenty-five specimens range from 0.3 mm to 0.6 mm.

The histogram representing the probability density of the grip displacement f(b) is

shown in Fig. 3. The crack arrest length X, also ranges form 10 mm to 40 mm. A

histogram representing the probability density of the crack arrest lengths f(X) is shown

in Fig. 4.

The energy release rate for a straight horizontal crack of the same depth as that

of a corresponding diffusive crack is expressed as

K2KI
Jo= E 

(5)

where K, is obtained from Eq. 4. The displacement of the grips 6 in Eq. 4 has been 1,*

taken as the average value. The effect of Poisson's ratio due to plane strain

contribution (less than 10%) was neglected. The value of Jo for the specimen as a

function of the crack depth X is plotted in Fig. 5 for the purpose of illustration. An

average value of Jo = 2y(G) = 363 Jim2 was obtained for this grade of PMMA. This

value agrees reasonably well with those quoted in the literature; 330 J/m2 [4] and

400 J/m2 [5].

AILj
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b) Fractographic Analysis

A reflected light micrograph of the fracture surface is displayed in Fig. 6. Three

distinct regions are evident; 'ribs*, 'mirror' and "river bed' are observed. These

fracture surface features have been previously identified [6-8]. SEM examination of

the rib region reveals that the distance between the two consecutive ribs is almost

constant (0.1 mm) for all specimens as shown in Fig. 7. Hence, this dimension

appears as a reasonable candidate for the radius of correlation called upon by Eq. 3.

c) Crack Diffusion Analysis

A trace of the twenty-five crack trajectories superimposed on the specimen

geometry is shown in Fig. 8. The trajectories exhibit both a deterministic forward

movement' due to the applied stresses and fluctuations in the y direction due to the

varying strength field. This is very similar to Brownian diffusion paths, in which

particles make forward movement due to a concentration gradient with random

fluctuation along the way. Hence, the variance of the distribution should increase

linearly with the crack length X (time in Brownian motion). In Fig. 9 the variance of the

Y distance of the trajectories is plotted versus the corresponding crack length X. The

plot is a good linear fit. The slope of this line is the diffusion coefficient, D, which

reflects the tendency of crack trajectories to deviate from the X axis. This type of

analysis has previously been used for a Kevlar polyester composite [9]. Evaluation of

D uniquely determines the set of all possible crack trajectories. It is found that the

value of the diffusion coefficient for this material, using the present geometry and

loading conditions, is 4.22 mm. This difussion coefficient will not be utilized in the

present theoretical treatment; being a zeroth approximation, but will be used in further

studies. b
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4. Theoretical Considerations

The outcome of the experiment, described in Section 3, is a pair of random

variables: the displacement at the grips, 6, at the instance of crack jump and the crack

arrest depth, X, after the jump.

The joint probability density of 6 and X is given by:

f(X, 6) = f(b) f(XI ) (6)

where f(b) is the probability density of 6 and f(Xl6) is the conditional probability density

of X, for a given value of 6.

The distribution of 6 is controlled by the local conditions at the notch tip. This is

approximated by a normal distribution, as is suggested by the experimentally

observed distribution (Fig. 3).

The theoretical model provides the conditional probability distribution of crack

arrest depths, X, for a given displacement 6 at the grips. Namely, the corresponding

conditional distribution function f(Xl) is written as,

f(X1) = 1 ( ep f u(X LO } dpi ()w
n xx

x0ro- (7)

Recall that the relationship between F(XI6) and the conditional probability density

function, f(Xlb), is

f(XI6) = dF(XI6)/dX (8)

Here, in Eq. 7, the functional (outer) integral represents averaging over the

space Di of all possible crack trajectories w beginning at the notch (X). The

exponential term, which is averaged, represents the probability that the crack

penetrates to a depth of at least X, if it 'chooses' a particular path y = W(X). The

parameter ro is the correlation distance of the random strength field y. The function

U(x, w(x)l06) dx/ro represents the probability of crack arrest between depth X and

X+dX, provided that the crack 'chooses' to propagate along y = u,(X). This function U

' y.
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is

U(X, wa(X) 18) =exp[- (1~ +Ij) J(x, ((X); 8)(9)

where r (1+1/x) is the gamma function, J(X, w(X); 6) is the energy release rate for a

crack that reaches the depth X along a path w (for a given displacement 6 at the grips),

and y*>O, ax>O are the strength field parameters to be evaluated. The meaning of y*

being, the average value of the y-field, that is assumed statistically homogeneous. The

term dPx(D) (w) in Eq. 7 is a Wiener Measure [1].

Thus, the joint probability density function for X and 6 depends on the

parameters y* and a, i.e., f(X,8) = f(X,b; y*, ).

The probability density function describing the distribution of crack arrest

depths, is also needed. This is

f(X* a) f f (X,b; y*a) d8

= f (8) f(X 15; y*, ax) d6 : ?,

(10)

The parameters y* and a, can now be found by *comparing' the theoretical

distribution of crack arrest depths given by Eq. 10, to the experimental distribution,

using the least square fit method (a version of the maximum likelihood principle).

The functional integral in Eq. 7, through which f(X; y*, a) is ultimately expressed,

can be evaluated by different approximations.

The zeroth aproximation is the one which approximates the energy release
.O

rate J(x, w(x); 6) in Eq. 9, for a crack that follows a path w to a depth X by the energy

release rate Jo(x; 6) for a straight horizontal crack of the same depth X. The resulting ' .

expression for the conditional distribution function of the crack arrest depths F(Xlb) is

0
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now,
II

F(XI) = 1-exp dep - ( + Jo(X dx

fX'~ aJy* ro 1
(11)

5. Data Analysis

The experiment yielded twenty-five pairs of values; Xi , bi, i = 1 ,...,25 (Xi is the 6

crack arrest depth in the i-th specimen and 5i is the displacement of the grips at the

instance of the crack jump in the i-th specimen).

First, the points ()i, 6i) were placed in the X, b-plane, Fig. 10. Two points were

excluded from the set of twenty-five due to their general non-conformity with the

remaining points, resulting in a total number of twenty-three experimental points.

The histogram of the probability density of 6 was approximated by a normal

distribution using the least square fit.

1 (- exp - (Kb)
a 27r 2a 2 (12)

where K> 1 231

231-

Both the histogram and the normal distribution fit are shown in Fig. 11. The normal

distribution is used as a matter of convenience. In what follows, the histogram could

have been used directly; a step-function form of the probability density function for 6.

,.. -..
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The 'Griffith* y (G) was determined from the equation

(G) - 1 3 P.(

2'~' ~ ~(13)

This is a natural choice for the initial value of 2y* in an interative algorithm of finding

the least square fit values y'fit, afit. A value of 2 y(G) was found to be 363 J/m2 and

used as an initial value for 2y*.

The experiment comprises 23 specimens. This is a relatively small sample to

construct a detailed histogram of the crack arrest depth. Obviously, the histogram in _

Fig. 4 is not sufficiently adequate. Hence, a more tedious procedure was used. The

range of crack arrest depth (11-39 mm) was subdivided into seven intervals, 4 mm

each. Every data point was assigned a weight 1/23. This weight was distributed

homogeneously over an auxiliary 4 mm interval centered at the data point, i.e., the

density of an individual point is
1(Mn1)

23x4

Therefore, the weight of each point is subdivided between two adjacent intervals. The

total weight accumulated in every one of the seven intervals yields the histogram

value.

Differentiating the function F(Xl) in Eq. 11 with respect to X given rise to the

conditional probability function f(xlb). For different initially assumed values of y* and a

(ro is constant = 0.1 mm), the theoretical values of f(Xl) were obtained. The

probability density function of crack arrest depth f(X) was then obtained from Eq. 10.

Finally the Levenberg-Marquardt alogirthm of non-linear least squares fit was

applied to match theoretical f(X) to its experimental counterpart (histogram of Fig. 12).

Only one solution was found, names 2y* = 47.6 J/m2 and a = 0.64. The theoretical

probability distribution f(X) together with the experimental histogram (Fig. 12) are

shown in Fig. 13.

i kllA
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It is noteworthy that the average value of Jo at the crack arrest point (360 J/m2 )

falls within the range of values reported in the literature for PMMA [4,51.

In the present model in order for the crack to be arrested at the point X, but not

before, means that J1 should exceed 2y at all points prior to X. It follows that all peaks

of the y-field ought to be lower than J prior to X. This implies that the average value of

y* of the field should be lower than the value of J at X. This is schematically illustrated

in Fig. 14. The strength field-y is random as illustrated schematically by the vertical

lines. The average strength field is 2y" which is obtained from the probabilistic model.

The solid circles in Fig. 14 are points of crack arrest. It is noticed that these conditions

occur at higher values of strength field than the average 2y*.

r.
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